Performance Model

๐–๐š๐ฒ๐ฌ ๐“๐จ ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐Œ๐จ๐๐ž๐ฅ ๐๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ๐š๐ง๐œ๐ž

The blog post – https://k21academy.com/dp10028 will get an overview of ๐–๐š๐ฒ๐ฌ ๐“๐จ ๐„๐ฏ๐š๐ฅ๐ฎ๐š๐ญ๐ž ๐Œ๐š๐œ๐ก๐ข๐ง๐ž ๐‹๐ž๐š๐ซ๐ง๐ข๐ง๐  ๐Œ๐จ๐๐ž๐ฅ ๐๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ๐š๐ง๐œ๐ž

โžฝ The ๐ ๐จ๐š๐ฅ of a Machine Learning Model is to find out patterns that generalize well on unseen information rather than simply memorizing the information that it had been trained on.

โžฝ Once your ๐ฆ๐จ๐๐ž๐ฅ is prepared, youโ€™d use it to predict the solution on the analysis or take a look at the data set then compare the anticipated target to the particular answer (ground truth)

โžฝ We are going to discuss the assorted ways ๐Ÿคฏ in which to ๐ž๐ง๐ฏ๐ข๐ฌ๐ข๐จ๐ง ๐ญ๐ก๐ž ๐ฉ๐ž๐ซ๐Ÿ๐จ๐ซ๐ฆ๐š๐ง๐œ๐ž of our machine learning model and why to use one in situ of the other

Topics we will cover:

โœ”๏ธ Confusion matrix

โœ”๏ธ Accuracy

โœ”๏ธ Precision

โœ”๏ธ Recall/Sensitivity/True Positive Rate

โœ”๏ธ Specificity

โœ”๏ธ False Positive Rate

โœ”๏ธ F1 score

โœ”๏ธ ROC (Receiver Operating Characteristics) curve

โœ”๏ธ AUC

โœ”๏ธ RMSE

โœ”๏ธ R-Squared (Rยฒ)

If you are planning to become a certified Azure Data Scientist Associate then register for the FREE Class at https://k21academy.com/dp10002

DP-100

About the Author Masroof Ahmad